
Features of sound waves

- 1. Amplitude (measured in dB) Loudness
- 2. Frequency (measured in Hz) *Pitch*
- 3. Waveform (e.g., simple versus complex). *Timbre*
- 4. Phase

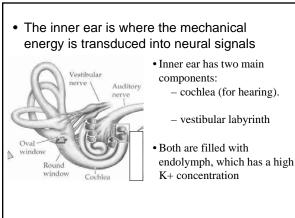
i kHz
🔹 5 kHz
🧃 10 kHz
🦸 15 kHz
🔹 16 kHz
4 17 kHz
🔹 18 kHz
🥼 19 kHz
4 20 kHz

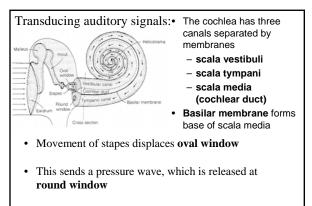
Capacity of auditory system. Part 3

- CNS can respond up to ~1,000 Hz max
- How then can the auditory system:
 - 1. Represent frequencies greater than 1,000 Hz?
 - 2. Represent loudness over a 120 dB range?
 - 3. Decode complex waveforms?

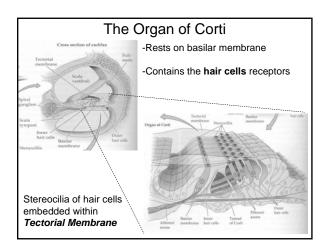
The human ear is a sense organ specialized for hearing and balance

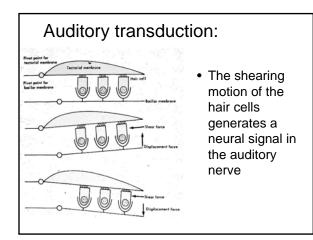
Outer ear

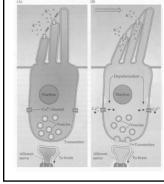

- Pinna
 - Helps direct sound into ear canal, amplifying certain frequencies (eg, 3kHz)
 Aids in sound localization of vertical targets
- Auditory canal – Funnels and modulates incoming sounds
- Tympanic membrane (eardrum)


 converts air pressure changes into mechanical vibrations

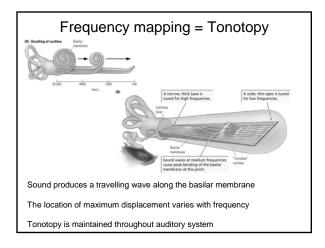
Middle ear

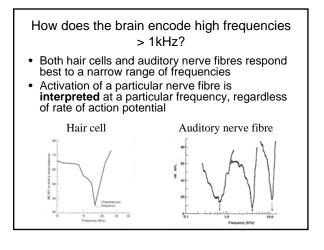

- Interface between air in outer ear and fluid in inner ear
- Fluids usual have a much higher *impedance* than air (~99% of sound waves in air reflect off water)
- The Middle Ear acts as an *impedance matcher*, so that sound waves in the air are changed into pressure waves in the inner ear fluid


Middle ear Essentially an amplifier 3 small bones (the "ossicles": malleus, incus and stapes) transmit sound vibrations mechanically to the cochlea Amplification due to: - 1. Leverage (malleus moves more than Tymp stapes) - 2. Force focusing device (Tympanic Oval area > stapes footplate) windo Ro Area of stapes footplate -0



• The pressure wave displaces the **basilar membrane**


Inner Hair cell transduction: auditory and vestibular systems



-Mechanically-linked K+ channels

-Bending of stereocilia towards kinocilium (largest one) opens channel, **depolarizing** hair cell, increasing neurotransmitter release

- Bending in opposite direction will hyperpolarize hair cell, decreasing neuotransmitter release

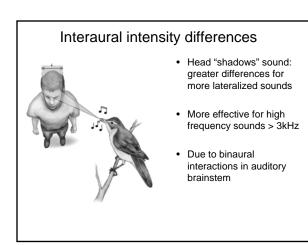
How does the brain represent loudness over a 120 dB range?

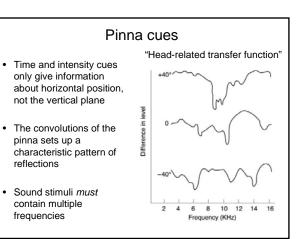
- Loudness coding cannot be a simple result of increases in neural firing rate
- Several other mechanisms:
 - Multiple sets of neurons with different thresholds
 - Recruitment of additional neurons as loudness increases

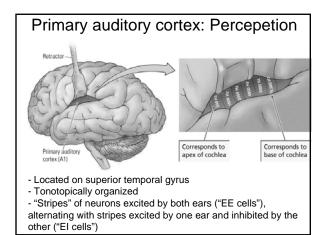
Central Auditory Pathways

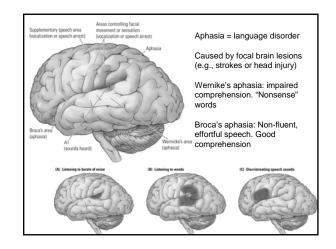
- Ascending pathways pass through several different nuclei before reaching the cortex
- Parallel pathways
- All information leaving the ear projects bilaterally

How does the brain localize sound?

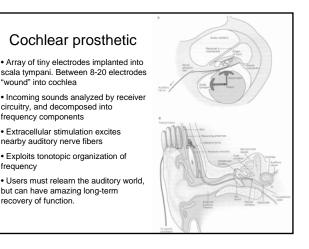

- Several cues available to localize sound direction
 - Interaural time differences
 - Interaural intensity differences
 - Pinna cues

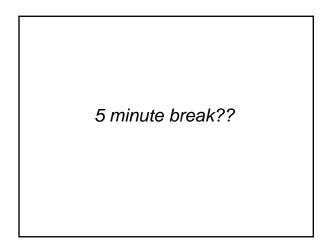

Interaural time differences

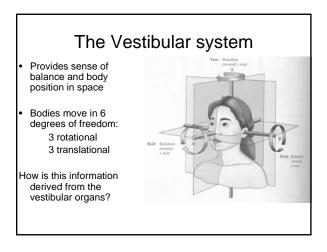


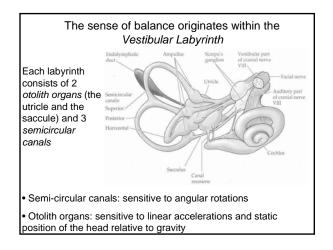

Sound takes longer to reach one ear than another

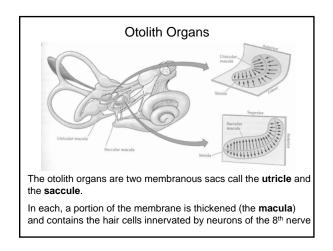
- Timing differences are typically very small (e.g., ~700 µs). Humans are sensitive to differences of around 10 µs (1 degree)
- Better for low frequency sounds < 3kHz
- Binaural "Coincidence detectors" in auditory brainstem

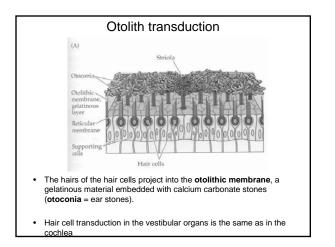


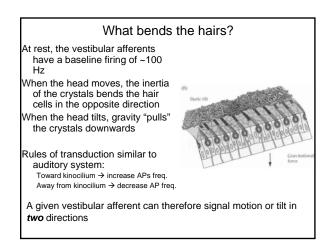


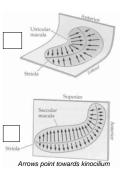


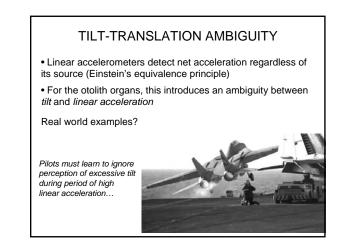

Types of hearing loss

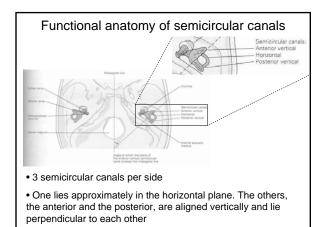

- 1. Conductive: Sound is unable to be transmitted through outer or middle ear. A mechanical defect.
 - extremely loud sounds rupture eardrum or damage ossicles
 - infection fills middle ear with fluid
 - ear wax!
- Sensorineural: damage to structures of inner ear that affects hair cells, or to auditory nerve (nerve deafness).
 - A transductive and/or peripheral defect.
 - extremely loud sounds damage Organ of Corti
 - ototoxic drugs that damage hair cells
 - presbycusis (aging) due to atherosclerotic damage to microvasculature of inner ear
 - auditory nerve tumour
- Central: Damage to auditory pathways upstream from cochlea. A defect in the Central Nervous system.
 - e.g., tumours or strokes in the central auditory pathways

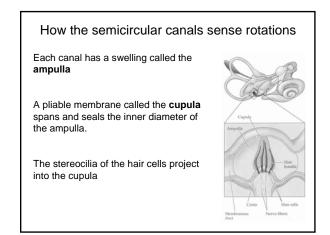


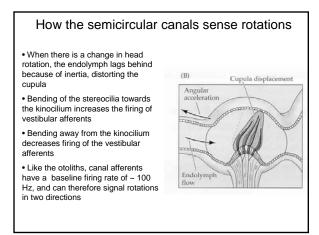


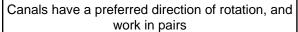


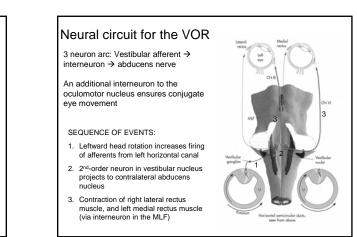


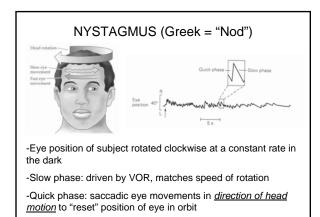


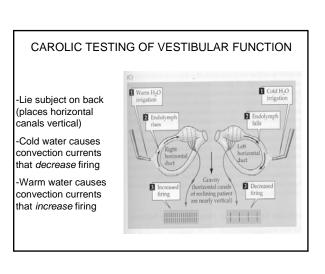

Orientation of utricle and saccule


- With the head upright, the macula of the utricle senses horizontal translations (left/right and front/back)
- The macula of the saccule is on the side, and sense vertical translations (up/down and front/back).
- In each macula, the hair cells are oriented in all possible directions. All possible tilt or translation directions can therefore be represented across both sides of the head



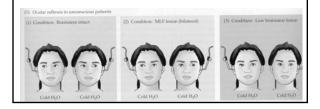





- Three canals per side, oriented roughly orthogonal to each other.
- Each of the 6 canals is best activated by a different direction of head rotation (rotation toward the canal increases afferent firing).
- The canals work together in a push pull organization. When one canal is maximally active, the other is maximally inhibited.
- For example, for rightward rotation, excitation occurs in the right horizontal canal, and inhibition in the left horizontal canal
- All possible directions of head rotation are covered, and hence can be unambiguously encoded

The Vestibular-Ocular Reflex (VOR)

- The VOR stabilizes the retinal image during head rotations.
- When the head rotates in one direction, the eyes rotate at the same speed in the **opposite** direction (ideal VOR gain = 1).
- · This keeps gaze stable in space



CAROLIC TESTING OF VESTIBULAR FUNCTION

- Used to test brainstem in unconscious patients

- Assess VOR: Look for direction of slow and fast phase of nystagmus and conjugate eye movements

-Indicative of brainstem function (pictures below show slow phase)

Additional Resources

- Chpt 13 and 14 of "Neurosciences, 2nd ed", Purves et al 2001
- Chpt 30, 31 and 40 of "Principles of Neural Science, 4th ed", Kandel, Schwartz and Jessel
- Great animations available at: http://www.physpharm.fmd.uwo.ca/undergrad/sensesweb/ (For this website, concentrate on what we talked about in class!)